DNA-binding proteins and evolution of transcription regulation in the archaea.
نویسندگان
چکیده
Likely DNA-binding domains in archaeal proteins were analyzed using sequence profile methods and available structural information. It is shown that all archaea encode a large number of proteins containing the helix-turn-helix (HTH) DNA-binding domains whose sequences are much more similar to bacterial HTH domains than to eukaryotic ones, such as the PAIRED, POU and homeodomains. The predominant class of HTH domains in archaea is the winged-HTH domain. The number and diversity of HTH domains in archaea is comparable to that seen in bacteria. The HTH domain in archaea combines with a variety of other domains that include replication system components, such as MCM proteins, translation system components, such as the alpha-subunit of phenyl-alanyl-tRNA synthetase, and several metabolic enzymes. The majority of the archaeal HTH-containing proteins are predicted to be gene/operon-specific transcriptional regulators. This apparent bacterial-type mode of transcription regulation is in sharp contrast to the eukaryote-like layout of the core transcription machinery in the archaea. In addition to the predicted bacterial-type transcriptional regulators, the HTH domain is conserved in archaeal and eukaryotic core transcription factors, such as TFIIB, TFIIE-alpha and MBF1. MBF1 is the only highly conserved, classical HTH domain that is vertically inherited in all archaea and eukaryotes. In contrast, while eukaryotic TFIIB and TFIIE-alpha possess forms of the HTH domain that are divergent in sequence, their archaeal counterparts contain typical HTH domains. It is shown that, besides the HTH domain, archaea encode unexpectedly large numbers of two other predicted DNA-binding domains, namely the Arc/MetJ domain and the Zn-ribbon. The core transcription regulators in archaea and eukaryotes (TFIIB/TFB, TFIIE-alpha and MBF1) and in bacteria (the sigma factors) share no similarity beyond the presence of distinct HTH domains. Thus HTH domains might have been independently recruited for a role in transcription regulation in the bacterial and archaeal/eukaryotic lineages. During subsequent evolution, the similarity between archaeal and bacterial gene/operon transcriptional regulators might have been established and maintained through multiple horizontal gene transfer events.
منابع مشابه
Genesis of Chromatin and Transcription Dynamics in the Origin of Species
Histone proteins compact and stabilize the genomes of Eukarya and Archaea. By forming nucleosome(-like) structures they restrict access of DNA-binding transcription regulators to cis-regulatory DNA elements. Dynamic competition between histones and transcription factors is facilitated by different classes of proteins including ATP-dependent remodeling enzymes that control assembly, access, and ...
متن کاملEvaluation of MYB93 and MAD8 Genes in Transgenic and Non-Transgenic Rice
Increasing drought tolerance, especially in rice, which is one of the most important crops in Asia, is necessary. Transcription factors are specific sequence DNA-binding proteins that are capable of activating or suppressing transcription. These proteins regulate gene expression levels by binding to cis regulatory elements in the promoter of target genes to control various biological processes ...
متن کاملThe role of Musashi protein in spermatogenesis and male infertility
Background: Inactivation of transcription occurs during two phases of spermatogenesis. First, in spermatocytes entering the primary meiosis and the second in round and elongating spermatids. These stages of inactivated transcription demand extensive regulation of translation. Therefore, presence of the control on gene expression during spermatogenesis seems essential. In the cases that post-tra...
متن کاملSame same but different: The evolution of TBP in archaea and their eukaryotic offspring
Transcription factors TBP and TF(II)B assemble with RNA polymerase at the promoter DNA forming the initiation complex. Despite a high degree of conservation, the molecular binding mechanisms of archaeal and eukaryotic TBP and TF(II)B differ significantly. Based on recent biophysical data, we speculate how the mechanisms co-evolved with transcription regulation and TBP multiplicity.
متن کاملجداسازی پروتئین LMG از بافت کبد موش و میانکنش آن با
ABSTRACT In eukaryote cells, DNA is complexed with a series of basic proteins making units of chromatin structure named nucleosomes. In addition, nonhistone proteins with different function are the components of chromatin. Among these proteins, a group with a low mobility on gel electrophoresis have been identified and named LMG. In this study a LMG protein with a molecular weigh of 160 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 27 23 شماره
صفحات -
تاریخ انتشار 1999